
© 2023 Verosint. All rights reserved.© 2023 Verosint. All rights reserved.

Defensive API development 
techniques for Gophers
Bertold Kolics

1

LASCON ‘2023, September 27, 2023, Austin, TX USA



© 2023 Verosint. All rights reserved.

My Context

● Question Asker, Bulldog Engineer
● Not a

○ Gatekeeper
○ PEN tester, or even a security tester

● Managing risk
● Verosint - small startup < 20 employees

○ SaaS business
○ Detect & prevent online account fraud

● Past roles
○ IT, pre-sales, QA, developer, manager

2

https://www.verosint.com


© 2023 Verosint. All rights reserved.

Motivation

● API as a business for many vendors just like Verosint
○ APIs are accessed directly and indirectly

● Rarely any SaaS application is built in isolation
○ i.e. consumers of 3rd party applications exposed via APIs

● Para-functional requirements are implied to deliver customer value:
○ security
○ reliability/availability
○ scalability/performance

● Malicious actors may cost business $$$
○ outgages
○ reduced availability

● Defensive posture at the application layer needed for a multi-pronged approach

3



© 2023 Verosint. All rights reserved.

Agenda

● Focus on Go language for building, maintaining and securing HTTP-based APIs
○ code samples, libraries, practices

● Out of scope
○ infrastructure
○ hardware or hosted solutions
○ HTTP/3
○ Non-HTTP APIs
○ GraphQL

● Basic familiarity with Go, HTTP assumed

4

bit.ly/lascon2023

credit: Pragmatic Programmers



© 2023 Verosint. All rights reserved.© 2023 Verosint. All rights reserved.

Deployment View

5



© 2023 Verosint. All rights reserved.

Typical Cloud Deployment

● Often includes
○ Gateways (API, NAT)
○ Load balancers
○ Reverse Proxies
○ External services (e.g. authentication, authorization)
○ Application

● Understand what protection, mitigation techniques are available at each layer
● Overlap is OK

6



© 2023 Verosint. All rights reserved.

API Service Implementation with Go

● Deployment options include:
○ Microservice
○ Serverless

● Implementation will need to address
○ authentication
○ authorization
○ request paths to handle
○ HTTP methods to support (and not support)
○ payload (schema) for requests and responses
○ possibly: resource limits

7



© 2023 Verosint. All rights reserved.© 2023 Verosint. All rights reserved.

Building HTTP APIs with Go

8



© 2023 Verosint. All rights reserved.

Go - The Good Side*

● No 3rd-party library required
○ unlike other languages
○ reduced attack surface
○ much reduced risk for supply chain attacks

● Core language supports testing
○ unit, fuzzing, performance

9

*Is there a bad side? 🤔



© 2023 Verosint. All rights reserved.

When You Need 3rd-Party Libraries

● Carefully consider options
○ not just functionality or licenses

● Support is key for both open-source and commercial libraries
● Criteria for evaluating OSS projects

○ age of the project, adoption, responsiveness of maintainers, 
openness to contributions, commit activity/history, release 
history/frequency, documentation, automated test coverage, 
availability of code quality metrics, presence of security 
tests/scans, number of open issues, rate of closing issues, 
number of dependencies

● Run your own scanners
● GitHub/GitLab provides plenty of repository information to 

help assessments

10

Image credit
Mohamed Hassan from Pixabay

https://pixabay.com/users/mohamed_hassan-5229782/?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2834264
https://pixabay.com//?utm_source=link-attribution&utm_medium=referral&utm_campaign=image&utm_content=2834264


© 2023 Verosint. All rights reserved.

GitHub Insights for Assessing 3rd-Party Libraries

11



© 2023 Verosint. All rights reserved.

3rd-Party Libraries

● Test openness
○ open a pull request
○ open an issue

● And test the time it takes to get a response & the quality of response

12



© 2023 Verosint. All rights reserved.

Example: go-resty

● Makes interacting with RESTful HTTP 
APIs more convenient

● But …
○ maintainer non-responsive for a long time
○ release frequency was poor until last month 

● And with a defect present in 2.7.0 
○ sync pool data race condition
○ occurred a few times a day on a production system
○ spent a lot of time chasing the issue
○ only fixed in March without a release tag

13

https://github.com/go-resty/resty/issues/630


© 2023 Verosint. All rights reserved.

Example: go-resty

14

Library used to incorrectly handle buffers across concurrent requests



© 2023 Verosint. All rights reserved.

Keep Go and Dependencies Up-to-Date

15

● Dependencies - regular updates in all repositories
○ Renovate bot is a life saver

● Use govulncheck to test for vulnerable components
● Go - sign up for release announcements

○ 1.21.3 addresses rapid stream reset vulnerability

● Recent entry from Cloudflare blog
○ HTTP/2 Zero-Day vulnerability results

in record-breaking DDoS attacks

https://github.com/renovatebot/renovate
https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck
https://blog.cloudflare.com/zero-day-rapid-reset-http2-record-breaking-ddos-attack/


© 2023 Verosint. All rights reserved.

Common Pattern for Go API Implementations

16

● Configure the routes
○ Associate query paths with handler functions using a multiplexer/router
○ Implicitly configure the HTTP methods to handle

● Different router packages available: built-in, chi, gorilla
● Implement the handler function

○ router invokes handler function
○ parallel executions should be expected

● Handler function
○ validates request (request parameters, headers, payload) 
○ executes business logic
○ sends response to client

https://pkg.go.dev/net/http#ServeMux
https://github.com/go-chi/chi
https://github.com/gorilla/mux


© 2023 Verosint. All rights reserved.

Recovery function

● An unrecoverable issue in the handler might cause unexpected 
state in the application
○ for example: nil pointer dereference
○ in a go routine: it may crash the app

● Create a recovery function
○ allows graceful recovery
○ and the recovery function can also log the details about the crash for 

diagnosis

17



© 2023 Verosint. All rights reserved.

Example Recovery Handler

18



© 2023 Verosint. All rights reserved.

Basic Checks

● Disable methods not used:
○ TRACE, HEAD, OPTIONS (may be needed for CORS)
○ but possibly other unused ones: GET, PUT, POST, DELETE

● Check request headers

19

Header Questions

Accept can the client accept the content you produce?

Content-Type do you support this content from the client?

Content-Length is it present, is valid, is it too large?

Content-Encoding do you really need to accept chunked encoding?



© 2023 Verosint. All rights reserved.

Rate limiting

● Rate limits could be tied to
○ source IP/port (if no authorization is needed),
○ access token,
○ or a combination of rules

● Go has simple built-in rate limiting
○ better to use a library such as redis-go
○ especially when multiple containers/apps are serving

● Most implementations provide hints to the clients about 
rate limits using response headers
○ Ratelimit-Limit, Ratelimit-Remaining, Ratelimit-Reset

20

https://github.com/redis/go-redis
https://www.ietf.org/archive/id/draft-polli-ratelimit-headers-05.html


© 2023 Verosint. All rights reserved.

Fuzzing

● Fuzzing framework built into Go
○ can be run for a limited time
○ can be pre-seeded with corpus (~ test data)

● Best option: fuzz the business logic
● Alternatively:

○ fuzz the handler
○ fuzz the API over network - don’t run it against production(!)

21



© 2023 Verosint. All rights reserved.

Payload Validation Using JSON Schema

● JSON payload in HTTP requests may have malicious content
● JSON schema has powerful ways to validate content

○ libraries such as gojsonschema makes eliminates the need for writing additional code

● Examples of rules:
○ setting minimum / maximum length for strings
○ leveraging built-in types (e.g. IPv4 address, UUID)
○ limiting possible property values with a regular expression
○ setting minimum, maximum size for arrays, mandating unique values
○ disabling additional properties to prevent actors using undefined properties
○ allow only a list of fixed values (enumerations)
○ making properties mandatory

● Relevant specifications: OpenAPI, JSON Schema

22

https://github.com/xeipuuv/gojsonschema
https://www.openapis.org/
https://json-schema.org/specification


© 2023 Verosint. All rights reserved.

Payload Validation Using JSON Schema

23

Example from Verosint API docs at 
https://docs.verosint.com

https://docs.verosint.com


© 2023 Verosint. All rights reserved.

Payload Validation Using JSON Schema

24



© 2023 Verosint. All rights reserved.

There is so much more to cover …

That we did not talk about.

● HTTP Server configuration options
○ timeouts (read, header read, idle time out)
○ connection management
○ maximum size of header
○ TLS configuration

● Rate limiting headers
● Authentication/authorization
● Nuances of each HTTP method

○ e.g. GET - URL escaping, leakage of information in logs

● Preventing caching of responses

25

https://www.ietf.org/archive/id/draft-polli-ratelimit-headers-05.html


© 2023 Verosint. All rights reserved.

Recap

● Understand the deployment of your application
○ what protections are available at what layer

● Building secure APIs require secure toolchain
○ including Go runtime and 3rd-party dependencies
○ keep them up to date
○ be selective about dependencies - less is more

● Make your APIs resilient
○ protect the application from crashes
○ rate limit clients

● Inspect incoming requests
○ headers, payload length, format
○ reduce manual coding using JSON schema validation
○ emit logs that can trigger automated defensive actions

● Test your APIs, business logic with fuzzing
26



© 2023 Verosint. All rights reserved.

Additional Resources

● OWASP Top 10 API Security Risks
● Open Source Security Foundation

○ scorecard app

● Getting started with Fuzzing
● How to Parse a JSON Request Body in Go
● Make resilient Go net/http servers using timeouts, 

deadlines and context cancellation
● Tool selection from ISTQB Certified Tester Advanced Level 

Test Manager Syllabus

27

bit.ly/lascon202
3

https://owasp.org/API-Security/editions/2023/en/0x11-t10/
https://openssf.org/
https://github.com/ossf/scorecard
https://go.dev/doc/tutorial/fuzz
https://www.alexedwards.net/blog/how-to-properly-parse-a-json-request-body
https://ieftimov.com/posts/make-resilient-golang-net-http-servers-using-timeouts-deadlines-context-cancellation/
https://www.istqb.org/certifications/test-manager


© 2023 Verosint. All rights reserved.© 2023 Verosint. All rights reserved.

Thank you

28

See you at

https://bit.ly/bertold
https://www.verosint.com

https://bit.ly/bertold
https://www.verosint.com

